FINAL REPORT ON CONTRACT F49620-93-C-0026 VOLUME 4(CU)

PRINCETON UNIV NJ DEPT OF MECHANICAL AND

> AD-A185 432

F/G 2074

T
3
W
O
-
™M
0.0
~
4
[ 3
=
:
&
~
L
«
w
£
-
m

UNCLASSIFIED F49620-85-C-0826




LI g
[N u_!.‘ q!':"ty."‘, L

)

]

b

b

3

4

. , |
L

A flio 5

——— t l;—f’ m;%

e 7 2.0'*

)
1

he
ll= e

)
(&

IIIII

-
L4

MICROCOIPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANUARDS 1964 4

"




.........

[RRNE NS SRV o e gla T LR ORI e LU ) VA0, "a8 Yad Vaf ol tag . 4 - J e 8 Sag 0.9 LYY Sag 0. b 0

A ._ . AFOSR-TR. 8§7-13529Y
.»'
.'. N .
N 0T FILE cosy
— .
X o
N CO
2 \ | N e g e
P FINAL REPORT ON
'R AFOSR CONTRACT F49620-85-C-0026
<c Steven A. Orszag, Principal Investigator
“ Department of Mechanical and Aerospace Engineering
R Princeton University
: Princeton, NJ 08544
ﬂ
s Volume 4
. DISTRISUTION STATEIENT &
- oved for public t'eiedwi
: \ App‘;“gtﬁbunon Unllm;\edg__;__

PRINCETON UNIVERSITY




FINAL REPORT ON
AFOSR CONTRACT F49620-85-C-0026

Steven A. Orszag, Principal Investigator
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

Volume 4

DTIC

GRELECTE™™
’5% SEP 3 0 1987} |

15T TEAN G
DISTRBUTIN ot
Approvad for p* ‘
Di;trmug:*u._t_,;.' e
e

A AT TN e e Ca g SOOI N SR ¢ Ot



. WAL b e b

JECURITY TLASSIFICATION OF Tr1S 2AGE

AL [/ES~ /IR

REPORT DOCUMENTATION PAGE

1s. REPORT SECURITY ZAWASSIFICATION
‘ Unclassified

- -

1. RESTRICTIVE MAAK.NGS

|2 SECURITY CLASSIFICATION AUTHOAITY
|

3. DISARIBUTION/AVAILABILITV OF AEPORTY

5. OECLASSIFICATION/QOWNGAADING SCHEDULE

rived Lor Publie D(.l{a:t')
J JP.L J,a“ XS uhchvJ(J

B « PEAFOQRMING ORGANIZATICN REPORT NUMBER(S)

v

5. MONITORING ORGANIZATION REPORT NUMBEA(S)

AFOSR.TK. g~ _

ia NAME OF PERFORMING ORGANIZATION o OFFICE SYmMBOL
(1f appucadie)

Princeton University

[
] 340
7e. NAME OF MONITORING ORGANIZATION v

"AF0SR /A i

X .c. ACORESS (City. State ana Z!P Coas,
Princeton University
Princeton, NJ 08544

5. ACDRESS (C.ty. Stace ona ZiP Coae

uulal.\«\ ~10 Bd/,l\aa ArR DC
201332 a Y9 ¢

4. NAME OF FUNOING.SPONSQRING
ORGANIZATION

1 AFOSR /NA

8n. CFFICE SYyMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERR

F49620-85—C-0026

(1f applicadia,
‘e, ADDRESS (City. State ana Z2I1P Coaa)

IO
30lling Air Force Base %U \

Washington, DC 20332-6448 .

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

PROJECT
NQ.

TASK
NO.

WOAK UNIT
NO.

blI/OXFE

X 1. TITLE tinciuae Security Classtlfication) 13 1 1&1 rRe ™ on ?’ 3 d 7 4 2—
. - £49620~-85-C-0026 Vo | ‘-Fo
" .} 1. ?SASONAL AUTHORIS)
» - Steven A. Orszag
la. TYPE OF AEPORT 136 TIME COVEAED 14. DATE OF AERDAT (Yr. Mo.. Days 18, PAGE COUNT
; Tinal Report raom 10/1/84 r0l1/20/84 May, 1987
» 9. SU?’.LEMENTARV NQTATION

CSSATI COCES

18 SUBJECT TSAMS rContinue on reverse if necessary and iaenaly 0y blocn number)

vees | smoue | sua.

SR

| f

| {

TUPLuL\AcQ) M\Aw«(r{ul S‘iw\ulalfok

3 ABSTRACT Continue on ~verte 1/ necessery and dannfy dy bdlocR number)

This report consists of capers that surmarize work dene on this research project. The

Tajor results include:

X aumbers; 3) The discovery that hich Penmolds mumber turbulent flcws tend to act as if they

~ad weak nonlinearities, at least when viewed in terms of suitatle ‘'‘cuasi-particles';

1) The further analysis of secordary instapility mechanisms in free shear flows, including

“he role of these instabilities 3~ chactic, 3-D free shear flows; 5) The Surther develcp- H
2 ent of numerical simulaticns cof turbulent spots in wall bounded shear flows; 6) The
. study of cellular autamata for the sciution of fluid mechanical vreoblems: 7) The clarifi-

' ;ation of the relationshir betseen
. low structures to lonc-wavelenc—n

1) The develcmment and arplication ci the renommalization group

;Tethod to the calculaticn of fundamental constants of turtulence, the construction of
turbulence transcort models, and large—eddy simulaticns; 2)

\ 10 turbulent heat transfer through the entire rance of exger:im

the hnroerscale instabilicy cf
cercursaticrs ard the cellular autamaton description

The arvlication of RIG methocds

Ht;a_lv ac\.essx_ble Reynblds

anisotrcpic small-scale

JISTAIBUTION/AVAILABILITY OF ABSTRACT

{zLassimieo/unLimiren X same as aes X oo ¢ seas

ch[as:;[:e(,{

):1 ABSTARAACT SECLAITY 2 _ASSIFICATION

NAME OF RESPONSIBLE INDIVIDUAL

' Dr James M McM:cL\ae/

l22¢ ORFEI(CE SYMBOL

AFOSR /NA

Iy TELEAMCNE VLMEBER
‘dnecivae Arwa Coae

(2e2) 247-¥Y93¢

FORM 1473, 83 APR

s 28SC. iz
SEZ_RITY I_A§SIFICAT ON OF T= 5 2aGE
UNCLASSIFILEL



) . Co R
A A

STRACT, continued from other side

fluids; 8) The development'of'efficient'methods to analyze the structure of
range attractors in the description of dvnamical systems; 9) The analysis of
serscale instability as a mechanism for destabilization of coherent flow structures.

o s . o . . .
o ..‘.__4-,‘. AT .'f__.




WEAK INTERACTIONS AND LOCAL ORDER IN STRONG TURBULENCE

Victor Yakhot
Steven A, Orszag
Alexander Yakhot(®
Raj Panda
Applied and Computational M athematics
Princeton University
Princeton, NJ 08544
US.A.
Uriel Frisch
CNRS
Observatoire de Nice
B. P. 139, 06003 Nice Cedex, FRANCE
and
Robert H. Kraichnan(®
303 Potrillo Drive

Los Alamos, NM 87544
U.S.A.

November 3, 1986
Revised April, 1987

Y . ey PRI
o ”’ ( "'L\' L(. l. R dha i e s .-‘I.l-r.'\.l_.'f.\- N e gt e N

- -w®,



R e T T ST T YT T T T R R R R TR TR T Ow WYY

" ABSTRACT

. Data from simulations of channel flow and decay of homogeneous turbulence in-

dicate anomalously strong correlation of velocity and vorticity directions (’local Beltramizu-

tion’) in band-filtered velocity fields when the band consists of a thin cigar in mode space

ENO B 3

(whose physical space representation is as an array of ’pancake eddies’). Spherical shells or

other broad bands in mode space do not seem to exhibit the effect.
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; In fully developed three-dimensional turbulence, 'local’ interactions (that is, -

teractions between comparable scales) have been traditionally thought to be dynamiculiy

¥

¥

A . . . .

‘2 much more significant than nonlocal interactions (for example, in the cascade of turbulent
. energy).!

3

5 . . :
) However, analysis of experimental data on energy transfer shows? that those in-
A

teractions which contribute most strongly involve wavenumber triads which, while local,

have aspect ratios (ratio of largest to smallest wavenumber) in the range 5 to 10. The

g s
v 4 4 s A

ALHDIA? yields results typical of second-order turbulence. It predicts that about 20% of the
total transfer come from triads interactions with aspect ratios less than 2, while about 80%
o come from triads with aspect ratios less than eight. However, these figures give less than the
L whole story. If local interactions are consistently removed from the dynamics, the loss of the
B energy transfer from these interactions is counterbalanced with an enhanced transfer by the
5

remaining interactions, at least within the framework of the closures®. The result is that re-

moving triads with aspect ratios eight and less leaves the total energy transfer nearly un-

B R

changed, instead of reducing it by 80%.

To analyze the effect of local versus nonlocal interactions, we decompose the
velocity field v(r) and the vorticity field @w=V x v as v(r) = Zvj(r); o(r) = Z(n)i( .

Here the band-filtered velocity field vi(r) is defined as vi(r) = Yu(k)exp (ik-r) where the

-

sum cxtends over wavevectors K within suitable distinct wavevector bands B, More generdl

t 3 s oy )

ly, the band filtered ficld is defined as vi(r) = ¥ um)o,(ry where ¢,(r) is a complete set of
A nc B,
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orthogonal functions. In the channel flow simulations reported below, the velocity field is
Fourier transformed in the x- and y-directions while the Chebyshev polynomials To(z) are
used in the z-direction perpendicular to the walls. In the simulations of decaying turbulence

reported below, three-dimensional Fourier series are used.

In terms of the band-filtered fields, the Navier-Stokes equations for incompressi-

ble flow are

ov

Ty ZNLJ+ voV v (1)

ij

where N;; = vix @/ - Vx;; and V x;; subtracts out the divergent part of vi x @. A meas-
ure of the strength of local interactions is given by the intra-band contribution N;; to the

nonlinear term in (1).

In two-dimensional flow, velocity and vorticity are perpendicular, so the intra-
band term N;; can only be small through pressure balancing. This is indeed observed in
high-Reynolds number numerical simulations of decaying two-dimensional flow, which
display organization of the flow into quasi-one-dimensional vortex-gradient sheets® or neurly

circular vortex patches®.

In three-dimensional flow, depletion of local nonlinear interactions can occur ¢i-
ther by pressure balance within N;, or, more directly, by local 'Beltramization” in which the

band-filtered ficlds v and o' are nearly parallel in physical space. While local pressurce bal
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ance does not allow for complicated instantancous three-dimensional flow topologics,'” locul
Beltramized flows are not so restricted. In this work, we have investigated the possibility of
d local Beltramization using results of a direct numerical of turbulent channel flow at a Rey-

nolds number Re. = 184 based on the half-channel-width and the friction velocity. Thus the

channel width in dimensionless wall coordinates is H = 368. The computer code is described

o o8 o o

in Ref. 11. Two channels of different linecar dimension have been considered. The number

-y

of grid points used in these simulations was 323 and 322x 64, respectively. The same effect

has also been studied in (128%) simulations of the decay of homogeneous turbulence.

The analysis used here follows an earlier analysis of the full (non-bandpass-
filtered) flow field v(r).12 Specifically, we evaluate the distribution of the cosine of the angle
0 between the velocity vi(r) and vorticity @(r). We subdivide the interval =1 < cos9 < 1
into two hundred equally spaced intervals and define the probability function P(cos 0) as the
‘ number of grid points having the angle 6 between the bandpass-filtered velocity and vortici-
- ty. The variable cos 0 is the relevant one in three-dimensions because of the form of the
volume element. Note that 3 P(cos8) = N where N is the total number of grid points. Each
half of the channel (0< z< 184) is subdivided into three intervals: 0< z< 15:
15< z2< 40,40 < z< 184. In order to avoid the effects of the walls, the velocity ficld has
been analyzed in the outer part of the channel 40 £ z £ 328. The Fourier-Chebyshev
band-filtering has been performed using the data on the entire flow field. Then the filtered
ficld is transformed back into physical space and the resulting field is analysed locally in space

o
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for 40 < z < 328. We recognize that there may be ambiguity in space localization duc to an

"uncertainty principle”.

The results plotted in Fig. 1 for the band B; consisting of ky = * 4, ky = 1 2;
p= 15,16,17,18 show that vi(r) and o'(r), tend to align; that is the probability function

P(cos ©) is sharply peaked at cos® = —1 at t = 50. To characterize the effect we define the

Beltrami ratio as B= max[P(1), P(~1)]/P,,(0), where P, (0) is the value of P(cos6) aver-

aged over the interval -%— < cosO < ?1)- In Fig. 2, we plot the time evolution of B(t) for

40 < t < 77 with samples taken at the time intervals At = 1. We find that B> 12 approxi-
mately 30% of the time. Continuing to add modes to the band leads to disappearance of the
peak of P(cos 0) when the band is too wide. A similar effect has been observed in numerical
simulation of decaying homogeneous turbulence (see Fig. 3). It is typical for a variety of
realizations of band-filtered velocity fields in both channel and decaying turbulence simula-
tions that as soon as a few modes are present, there is an organization of the flow field in

which velocity and vorticity are almost aligned.

It should be mentioned that the band-filtered velocity field v/ does not satisfy the
incompressibility condition V -vl = 0 because of the properties of the Chebyshev polynomi-
als. To assess the role of incompressibility we have subtracted the nonsolenoidal part trom
the filtered velocity field and calculated the probability function P(cos0) of the residual ficld

satisfying the V -v = 0 constraint. The results are presented in Fig. 1(b), 2(b). It is abvi



»

R e i)

PR R R N

LN < D a't g 2 gt g° VLR U U UL WY WU Py PR T e T W W P VO PO W OV VW w v we

ous that imposition of the incompressibility condition does not strongly change the resulis
presented in Fig. 1(a), 2(a) since the filtered velocity field v(kx,ky,p) is only wcaks
compressible in the part of the channel we consider here (z, > 40). It is only in the wall rc-
gion z, < 15 that the effect is not observed. It is clear from Fig. 2(b) that imposing the in-
compressibility constraint leads to an increase of the value of B by some 10-40%. An in-
teresting property of the probability density P(cos8) is its asymmetry P(1) # P(-1) when
the Beltrami ratio B is large. However, the mean distribution P(cos®) obtained from 35

realizations in the interval 40 £ t < 75 is very symmetric.

This ’local Beltramization’ effect is observed to occur for general wavevector
packets W with large aspect ratio k >> Ak >> 1 where k is a typical wavenumber in the
band and Ak is the ’diameter’ of the packet [Ak = max(|k — p| with k,pe W)]. These
packets produce 'pancake’ eddies in which both the velocity and vorticity are quasi-two di-
mensional fields. This may be most easily seen by considering a prototype of such a packet.
namely, one for which k, << k,ky for all k in the packet and k, restricted to a narrow
range. Thus the incompressibility condition gives w = —(k,u + kyv)/k, << |u[+ |v], while
the vorticity field o = ikxv satisfies 0, << |w,| + |wy|. For such pancake eddies, we would
expect, in the absence of other correlations, that the angle between v and @ is uniformly dis-
tributed in the plane of the pancake, so that P(cos0) e 1/[sin 8] with strong peaks

cos =21,

To test whether the observed effect (see Fig. 1, 2) is of dynamic or Kinematic na

--------

A -
-------




ture we chose a number of distinct band-filtered ficlds corresponding to a few different in-
stants of time t (see Fig. 2(a)). From these fields we generated 1000 different realizations by

uniformly distributing the complex numbers v(ky,k,,p) for each selected mode in the band.

T

Imposing the incompressibility condition on each of the band-filtered random fields we have

generated another 1000 realizations. An additional 500 random realizations were generated
by uniformly distributing the random complex numbers to each of the (32x32x64) modes
of the total field v(k,,ky,p). The resulting random velocity fields were made incompressible
and then band filtered. The weakly compressible band-filtered fields were again made in-
compressible by subtraction of the nonsolenoidal part. Then the probability density P(cos 0)
was calculated for each member of the ensemble consisting of 2500 realizations. We then
calculated the cumulative probability p(B) that gives the probability that one Beltrami ratio is
larger than B. The function p(B) derived from these 2500 fields was compared with the
function p(B) corresponding to 35 realizations obtained from the time evolution of the
band-filtered numerical solution of the Navier-Stokes equation at 40 < t < 75 taken at
At = 1. The results are presented in Fig. 4. These runs suggest that the observed effect
does not have a simple kinematic explanation. However we must note that the Chebyshev-
Fourier modes do not diagonalize the two-point covariance function of the observed velocity
field and for this reason the randomized comparison fields do not exhibit the two-point co-

variance of the observed fields. This property will be investigated later!3.

The gencrality of the above results on the bandpass-filtered gecometrical order of

-6-
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velocity and vorticity is yet to be tested on other turbulent flows. It is difficult now to give u
systecmatic explanation for local Beltramization. This may actually be as, or more, difficult
than explaining the remarkable buildup of correlations between velocity and magnetic ficlds
in strong MHD turbulence.!® We stress that it is unlikely that any of the traditional two-

point closures can provide insight into the process of local Beltramization.!’

We now speculate on several instability mechanisms that may be important in the

dynamics that lead to local Beltramization.!®

First, secondary instability is a short
wavelength instability of quasi-two-dimensional flows that tends to produce locally aligned
vorticity and velocity. On the other hand, anisotropic pancake eddies are subject to the
long-wavelength hyperscale instability. These eddies are also unstable to the AKA instabili-

ty!? which also leads to generation of Beltrami flows at large scales. Perhaps a combination

of these instabilities, acting cyclically, can explain the observed effects.

The importance of steady solutions of the Euler equation in the context of tur-
bulence has been discussed by H.K. Moffat?®, he argues that turbulent flows can be
represented in terms of coherent structures with large helicity (Beltrami flows).>® Our
findings support Moffatt’s conjecture in the sense that the flow may be a superposition of

Beltrami-like structures defined at many different scales.

Whatever the cause of local Beltramization, it can have far rcaching conse-

quences. Indeed, we may conjecture that fullv developed turbulence rearranges itself nto
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hierarchy of coherent near-Beltrami flows with minimal self-interaction. In this case, tur-
bulence should be amenable to multiple-scale perturbation theory?! or renormalization-group
methods. Furthermore, virtually all turbulence models, starting with those of Prandtl, are
based on scale separation to justify eddy viscosity concepts. The present ideas seem to pro-

vide some justification for these approaches.
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Probability distribution P(cos8) in the channel flow in the region 40 < z, < 328

for:
a. the band-filtered velocity field (k, = £ 2;k, = + 2,P = 15,16,17,18)
b. the same band-filtered field with the incompressibility condition V - vi= 0 im-

posed.

Time evolution of the Beltrami ratio for the band-filtered field:
Solid line: velocity field vi(r), (ky= % Z;ky =+ 2;P=1516,17,18)

Dotted line: the same field with the incompressibility condition imposed.

Probability function P(cos®) for the band-filtered field vl
(kg = £ 2;k, = £ 2;ky= £ 22) in a simulation of decaying, homogeneous tur-

bulence.

Cumulative probabilities p(B):

Curve I (#): corresponds to 31 realizations of v(r) (ky = % 2;ky =% 2;p=15-18)
taken from the time evolution of the flow.

Curve II (o ): p(B) generated by introducing random phases into the fields vi(n).
Curves (x): same as (* ) but with the incompressibility imposed on all fields vi(r).
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The purpose of this Letzers section is to provide rapid dissemination of important new resulis in the fields regularly
covered by The Physics of Fluids. Results of extended research should not be presented as a series of letters in place of
comprehensive articles. Letters cannot exceed three printed pages tn lengih. inciuding space ailowea for utle. figures,

tables, references and an abstract limited to about 100 words.

Relation between the Koimogorov and Batchelor constants

Victor Yakhot and Steven A. Orszag

Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544

(Received 2 September 1986; accepted 23 October 1986)

It is shown that the renormalization group theory of turbulence leads to the relation
Ba = Ci P, between the turbulent Prandt! number P,, the Kolmogorov constant Cy, and the

Batchelor constant Ba.

The purpose of this Letter is to show that the renormal-
ization group theory'~ of turbulence leads to a simple rela-
tion between the Batchelor (Ba) and Kolmogorov (Cy )
constants. Here Ba and Cy are defined by the inertial range
kinetic energy and passive scalar spectra {E(k) and E (k),
respectively ]:

E=C &1k ~%3 (n
and
ET — Ba(.V/E'”)k —5/3, (2)

The parameters .V and € are the scalar and kinetic energy
dissipation rates defined as

9T\
N = x| = 3
: "°<ax,> <
and
2
E=ﬁ(@‘_+_ai) (4)
2\dx, odx,

and «, and v, are molecular diffusivity and viscosity, respec-
tively. .

In the first step of the renormalization group procedure,
we eliminate modes with wavenumbers larger than p from
the equation of motion for the Fourier components of the
velocity and scalar fields v, (k.w) and T(k.w), respectively.
In this calculation, it is assumed that k €p. In the limut k €p.
the sole effect of the small-scale elimination procedure is the
generation of a tubulent viscosity v(p) and diffusivity x(p).
In the limit k €p < k,, where k, is the Kolmogorov dissipa-
tion wavenumber, the turbulent transport coefficients are
proportional and

vip) =Px(p) (%)
with P, =0.7179.
We define the velocity and scalar fields v/ and T* fol-

lowing the eliminauon of wavenumbers larger than p. It can
be shown'-* that the two scalars

_ (o hr ar)
e(p):v_p_)(__..__’_) (6)
2 \dx, dx,

3 Prys =Ligs 30 1), Lancary 1987

2031 97 87 € 2CC3-283 3¢

I\

Np) =x(p)< ) (7N
ax;

are constants independent of p. This has some important

implications. If the spectra are given by relations (1) and

(2) then

= 21-'(p)J”k:E(k)dk=—Z-v(p)CKZ'=”p”] (8)
(o]
and

P I3
.V=2A‘(p)fk:£r(k)dk=%x(p)-§‘l% Bap'?. (9)
Q .

Dividing (8) by (9) and using relation (5) we obtain
Ba = C¢ P,. (10)

Substituting the values Cy = 1.617and P, = 0.7179 derived
in Refs. 1 and 2 we obtain Ba = 1.161 in good agreement
with experimenta] data.

This result is obtained using the e-expansion in the vi-
cinity of the fixed point. Thus, relation (9), is, stnctly speak-
ing, valid in the limit of Reynolds number R — «. We believe
that formula (9) is accurate when molecular diffusion is
negligible in comparison with turbulent diffusion. It should
be mentioned that experimental data on Ba are much more
scattered than data on the Kolmogorov constant Cy . This
can be easily explained since, in many cases, the contnibution
from even weak natural convection can strongly influence
the heat transfer but not a momentum transfer in turbulent
flow when R 1s not sufficiently large.
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ABSTRACT

An efficient method for computing a given number of leading
eigenvalues (i.e. having largest real parts) and the corresponding eigen-
vectors of a large asymmetric matrix M is presented. The method con-
sists of three main steps. The first is a filtering process in which the
equation x = Mx is solved for an arbitrary initial condition x(0) yielding:
x(t) = eMx(0). The second step is the construction of (n + 1) linearly
independent vectors vy = M®x,0S m < n or vy = e®M%x (1 being a
"short” time interval). By construction, the vectors v, are combinations
of only a small number of leading eigenvectors of M. The third step
consists of an analysis of the vectors {vy} that yields the eigenvalues and

eigenvectors.

The proposed method has been successfully tested on several
systems. Here we present results pertaining to the Orr-Sommerfeld
equation. The method should be useful for many computations in which
present methods are too slow or necessitate excessive memory. In par-

ticular, we believe it is well suited for hydrodynamic and mechanical sta-

bility investigations.
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I. INTRODUCTION

Numerous problems in science and technology involve the computation of
leading eigenvalues (and sometimes of the corresponding eigenvectors) of large asym-
metric matrices. In some cases, such as that of the calculation of eigenvalues of
transfer matrices in lattice problems (Stanley, 1971) or in hydrodynamic stability ana-

lyses (Drazin & Reid, 1981), the matrix of interest is infinite, in principle.

While rather efficient methods exist for the diagonalization of symmetric
matrices (see, e.g. Parlett, 1980 or Lewis, 1977) — no satisfactory algorithm for the
asymmetric case is known to us. The main obstacle is, of course, the nonorthogonali-
ty of the eigenvectors. The Arnoldi (1951) method and its variants enable the calcu-
lation of some eigenvalues, but not necessarily those with the largest real parts (which
are important in stability investigations; see however Jenning & Stewart, 1975 and
Saad, 1980 and references therein). At best this method produces eigenvalues of larg-
est moduli. Another disadvantage of the Arnoldi method is the necessity to increase
the dimension of the Krylov (Wilkinson, 1965) subspace considered in order to im-

prove accuracy. This may create memory problems.

Another method (Bennetin er a/, 1980; Shimada & Nagashima, 1979),
which was designed to compute Liapunov exponents for dynamical systems, is capable
of producing the real parts of the leading eigenvalues. Its advantage is in the fact that
its implementation does not require a large memory. However the method is slowly
converging and produces neither the imaginary parts of the eigenvalues nor the eigen-
vectors. (However, see Goldhirsch er al, 1987, for an accelerated convergence
method and computation of eigenvectors. The latter can be computed efficiently tor

relatively small systems.)
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It thus seems that many important problems involving 'arge asymmetric

[N g

matrices are very difficult to analyze using available methods. The algorithm proposed
in this paper is designed for such problems. It is fast and simple and can therefore be

easily implemented.

The proposed method has three essential steps. The first step is designed
to filter out nonleading eigenvectors. Let x be an "initial" vector and M the matrix

whose leading eigenvalues are sought. We first solve the equation:

—= = Mx (LD

for 0 € t< t;. The resulting vector x(tp) = eMbo

x is obviously a combination of
eigenvectors corresponding to leading eigenvalues (henceforth called leading eigenvec-
. tors). The nonleading eigenvectors are being damped by exponential factors. More-

over, if it so happens that the chosen initial vector x is independent of a leading

eigenvector, then this eigenvector will be introduced into x(t) by roundoff errors in

the process of numerical integration of eqn. (1.1). The next step involves the creation
of n linearly independent vectors. This can be done either by computing {M™x(tq);
.. 0< m< n-1} or by computing {cmM‘x(to); 0SS ms n-1} It is obvious (and

shown below) that the n vectors created this way are independent for nondegenerate
d spectra. A method for degenerate spectra will be described below as well. Once we
obtain n independent vectors which are essentially linear combinations of leading
eigenvectors only, it is a matter of straightforward algebra to produce the leading

eigenvalues and eigenvectors.

The structure of the paper is as follows. Section Il presents a description

of the meihod we propose. Section III offers error estimates and analyses of the alue-

-3-
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b braic structure of the vectors produced in the second step of the method. Section IV
[

o presents two algorithms based on the proposed method. Section V presents results
., obtained from an implementation of the method in the case of the Orr-Sommerfeld
. equation. Section VI offers a brief summary. Those readers not interested in the de-
d tails of the mathematical analysis of the method may skip Sec. IIL
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II. DESCRIPTION OF THE METHOD

Consider a matrix M, which is, in general, asymmetric and large (say of
rank R). Assume that the eigenvalues of M: A, A5, A3 -+ - are arranged so that
Rei; > ReA,; > ReA; - -, ie. it is assumed that the real part of the spectrum of M

is nondegenerate. Let e}, e,, e; - - - be the right eigenvectors of M corresponding to

the eigenvalues Ay, A5, A3 - - -, respectively.

Any vector x can be expanded in terms of the right eigenvectors of M:
R
X =Y oe (2.1)
i=1

Upon applying the operator eV, t> 0, to x we obtain:

R
Mix = 3 aetle (2.2)
i=1

Defining the resulting vector in (2.2) as x(t), we observe that the vector:

ooy = X 2.3
x(t) (O] (2.3)

can be approximated, for large enough t, by:

X() = 1 iaie“ei (2.4)
X015
or
n
() = Y Bie (2.4b)
i=1
where




At
_ e e
$ B|_ Ix(t)l (.40

and n is a suitably chosen (truncation) integer. The error involved in the approxima-

2 8 s &2 8 & a

: . | Al . :
tion (2.4) is of the order |c()”‘“ )“)‘|. Thus, for a given desired accuracy there are

[N
N values of n and of t which fulfill these requirements. The way t and n are to be
"N
o chosen in a practical algorithm is explained below. In the rest of this section it is as-
sumed that (2.4) is an actual equality in order to simplify the presentation.
L=
-
& Consider the following vectors:
" Vo = MPTg(t) : (2.5)
)
2
2 where 1 € m £ n+ 1. Using (2.4b), we obtain:
':
1 n
. Vm= S A2 Be; 1S m< n+l (2.6)
. =1
-
" . .
- Consider now the matrix W;; defined as:
Wi=AFl 1< 4,j<sn | (2.7)
L~
I“
-
E and denote PB,e; = &. The vectors &, 1 < i< n are n linearly independent vectors
:’:j since the e;'s obviously are. Egn. (2.6) can be rewritten as:
a
Vo = 2 Wil (2.8)
k=1

The matrix W is a Vandermonde matrix whose determinant is TT(A, = kj) and ‘s, by
1#]

assumption, nonvanishing, Consequently the n vectors vy, - - v, are independent

and spanned by e, e,, - - - e,. lence v ;. which v also spanned by ¢, - - .c,, «un

-6-
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B ,

be written as:

Vael = Y1V + Y2V2t YV (2.9)

#

3 Consider now the following linear transformation defined by:

d

)

Tva = Vo l€<s m<n (2.10)

-

- This is a linear transformation from the subspace spanned by vy, - - - vy orep, - - e,

to itself. Using (2.6) and the linearity of T:

L~ n . n

" AP Te = AP (2.11)
Y i=1 i=1

; Hence:

)

; Te; = Aie; (2.12)
’4
[ i.e. the A;’s are also eigenvalues of the operator T that acts in a finite (and small) di-
- mensional space. Let:

“ A n L}
. ei= ZguV] 1 S l,J S n (213)
'": j:l

.

al

‘.I

’n . L] .

., be an expansion of the e;’s in terms of the v;’'s. Then:

<

1 ] Y

.’: Tei = ZgUTvJ (2.14)
s j=1

N

>

$ .

y Define now the matrix D by:

* P i ~
- =D v 215
N Tv, = Dy, 1< 4j€n (2.13)
.

)
<, where the (Einstein) summation convention over repeated indices is assumed. Tt tol-
)

»

-’ -7-
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lows from (2.10) that D . = § for1 < i< n-1luandfrom (2.9 that D. = v
1 IR n.j )

D is just a representation of the T transformation.

Upon substituting (2.12), (2.13) in the left hand side of (2.14), and (2.13)

in the right hand side of (2.14) we obtain:

Aigivi = &iDjeve

Mgy = 8iDjx (2.17)

i.e. the row g (i fixed) is a left eigenvector of the matrix D corresponding to the

cigenvalue A;. Using the definition of the matrix D we can now proceed to find A, and

8ix- Inspection of the matrix D for small n leads to the following result, which can be

easily checked by substitution into (2.17):

k Y
gix = Z = (2.18)

k+1-
m=1 ;"i @

LIV I R

¥ LE. S (2,19

n+]l-m
A

m= |

Eqn. (2.19) can also be rewritten as:

o]
Y voA® - A= 0 (220
m=]

Conscquently, given the values of yp, one can use (2200 to compute the speoirim

Corhe

v o

and (2.18) and (2.13) to compute the cigenvectors. [t on’y remainy 1o compute

values of 7. To this end we perform an orthogonaiization of the vecrors v -

N

W T N TR e A et eyt - B S .. St e e e RPN
7 ‘- "'\."-."‘-'\‘”‘-\" -.'-.-.' \..~.‘ TP -.'\"’.' R T S




T

REEERN LA AR R aas 00N

Rl T RN Sl

[ 4

leading to the orthonormal set wy - - - w, such that:

where the definition of the matrix ¢ is obvious. Hence:

1
— J— 4
Voot = 2 (Vau "Wy )Wy (2.22
k=1

and using (2.21)

Yo+l = Z Z(vn+lwk)ckm m (2.23)
m= lk=1
Hence:
- ty -1
Yo = X (Vor1'Wy )i (2.2%)
k=1

Eqns. (2.18), (2.20) and (2.24) constitute the sought solution for the eigenvalues and

the eigenvectors.

All of the above formalism can be easily modified when the vectors v, are

defined by:

(9]
(B9
il

Vg = e(m=DM1y(py (

where T is a chosen time interval. In this case, A, in eqns. (2.6) — (2.7) is to be re-

** " This choice is especially convenient when the matrix M actualiy

placed by ¢
represents a differential operator (such as the Orr-Sommerfeld operatory. In such 4
case the vectors vy can be obtuned by solving x = Mx for 0 t < T wah v

the initial condition, i.e. solving an imihal value problem for the ditferential opor

.0.

‘Jn’l'.b.‘i_""i.r




In this way one avoids storing a large matrix M representing the ditfferential operutor.

Finally, we note that in the above procedure the coefficients of e, for in-
creasing values of i are increasingly damped by exponential factors. Moreover, the
above method should work, strictly speaking, only for cases of nondegenerate spectra.
A remedy to both of these problems is provided by a direct construction of the

orthogonal vectors w; [cf. (2.3) and (2.21)]. This is done by defining:

and:
i
Twiz z auw; + 2 e 1Wir 1o 1£ i< n (2.27)
k=1

where: Tw; = Mw,; or Tw,; = e‘“’wi corresponding to Te; = Ae; or Te; = c)‘"ei, respec-
tively (which are the two alternatives presented above). The advantage of computing
the vectors w by the use of (2.27) is that it enhances the weight of nonleading eigen-

vectors (see Section III for details).

The net result of the formalism presented in this section is the construc-
tion of n linearly independent vectors which ar: spanned (to a good approximation)
by the first n eigenvectors of M. Then either equation (2.20) or a representation of
the operator T in the basis defined by {w;; 1 £ i< m}can be used for the computa-
tion of the eigenvalues and eigenvectors. The resulting method is economical and

simple to implement.

-10-
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II. ANALYSIS OF THE METHOD

The present section is devoted to an analysis of the formalism developed in
section II. More specifically, we investigate the error involved in using a finite
number of vectors e; (or w)). In what follows we shall use the "exponential” version

for the operator T: Te, = e'e,.

Firstly, we wish to investigate the extent to which the (right) eigenvectors,
{e;}, of M are spanned by the vectors {w;} or by the vectors {v;}. Then we propose to

estimate the error involved in the computation of the eigenvalues.
We wish to show that the eigenvectors e; can be written as follows:

Mite, (3.1)

i R
ei = Z aijo + Z aijc i
=1

j=ivl

where R is the rank of the matrix M, lji = A;— A, tis the time of filtering or of ini-

;-
tial integration and the coefficients a; are of order unity. The proof proceeds by in-
duction. By construction:
R At 2
x(t) = Y e ae (3.2)
i=1
where q; are coefficients [see eqn. (2.1)]. Consequently, w,, being a normahzed vec-

tor in the direction of x(t), can be written as:

-2
¥

R .
At
w1=lec '(X,e-l (N,
=1

. . o At . . -
where the right side of eqn. (3.2) was divided by e and normalized. N is a normul-
ization factor. Hence:

-11-
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‘ 1

I R .
“'1_ —Zc ! (1‘(3‘ l}'.z)

i € =
) Nyay o,
X . . . al
; which shows that e, indeed has the expected form (with a;, = - and a, ;= - —
R NGy ' o
fori2 2). Next we prove that eqn. (3.2) is valid for i = 2. By definition:
Wy = Nz(Vz - (Vzwlf)wl) (35)
where N, is a normalization factor. Hence:
1 4 A1+ 1) As(t+ 1) R A+ T)
Wt (vyw)w, = o€ e+ 0" ey + Y oe ™ ey (3.6)
N2 =3
Substituting e, from eqn. (3.4) in the right side of eqn. (3.6):
1
——w; + (Vaw])w, = __l_exx(xﬂ)wl _ e)"(‘”)c)""azez
N, Ny
) \(t+1) R Agt Aa(t+1) R AfteT) -
. - 2eoe + e ey + Yot Ve, (3.7)
) =3 =3

By solving for e, in eqn. (3.7) it is easy to see that formula (3.1) is correct for i = 2.

Assume next that eqn. (3.1) has been proven for 1 £ i € m. Define:

jj 1S j£ i< m 18
-— A
PT 10 m2 j> i2 1 (2.9
At ,
a;c mz2 j> i 1 -
P = . (3.
B, 0 1€ js i< m
Both A and B are square matrices of rank m. Define also:
A .
d,¢ j12m+ 1S 1< m C
C,= 0 otherwise ‘

~|<-‘-' " ~ - . -.-'_' . P .
T RS ST U U U S S A A L SRR
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N By the induction assumption [and using detimitions (3-8, 9, 10) to rewrite ¢q. (3.1))
we have:
ZA W, + ZBUJ+ ZC,” (3.11)
=1
S .
N for 1 £ 1< m. Hence:
. - -1
e = (I - B} (Agwj+ Cye) (3.12)
. where the summation convention is assumed. For every integer r:
A Mil*l--t'ﬁ"')\kl t
.. = A Ay .
(BDix = a5 2, 3;_,x& ' ! (3.13)
)
. or
o
o
Ayit
'-‘ B:k < € x (314)
2
Cal
- Consequently:
o
g (I- B)z! = &y + hyeM (3.15)
) k = O ix® o .
- where hy is O(1) and hy = 0 for i 2 k or k > m [see eqn. (3.9)]. Substituting eqn.
(3.15) in (3.12) we obtain:
- At At . i < 3
; = AW+ Cije; + hye™A w + hye™Cpes i< is m (3.17)
N The first and third terms in the right side of eqn. (3.17) are linear combi-
natons of {w,; 1 £ k € m}. The second term is, using eqn. (3.10):
.
o -13-
)
>
Cd
-;‘ - ..-.“ "yt .‘._._. . u' ey _.‘ .». e - . N S TP S
NG AR NN NN Lo a2 s \'-.’ O GO AR A NS SRR R AP R SR




R At
3 ae e
j=m+1

J

The fourth term is:

R At R At R X At
Z h,'kc v 2 ak)-c ’kej= E ( Z hmak))c "ej (319)

k=i+1 j=m+l j=m+1 k=i+1

Consequently, by separating the terms containing {w;1 S j< i} and those which are

superpositions of {wj;i + 1< j< m}in eqn. (3.17) we obtain:

i m k At R
€= 2 VWit X X e ThyApyw+ X re

=1 k=i+l j=i+l j=m+1

Mile, (3.20)

where vj; and rj; are O(1) quantities. Note that we used the fact that hy = O fori2 k

or k > m. It follows from eq. (3.20) that

A R

i m
= ot Ajt 39715
e = Zyijwj+ . 2: o e 'wj+. )) rje e (3.21)
=1 =i+l j=m+1

for 1 £ i< m, where the definition of o is obvious. Next we use eqn. (3.21) to
complete the induction process. Eqn. (3.21) itself follows from the induction assump-

tion for 1 < j< m.

By its definition:

m
. +
Wasrl = Npa1(Vime 1= 3 (Ve W )W)
i=1

where N, is a normalization factor. Consequently:

m+1

- (n
Vel = E Qm+ 1.Wi
1=1

»
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where q,(nl,)l ; are O(1l) numbers. Using (2.4b) and (2.25):

m! o A{m) LN
EQqux ZBC e+ Z BC (3-24)

i=m+ ]

By assumption, the vectors ¢;; 1 £ i< m can be expressed by €q.(3.21). Substituting

eqn. (3.21) in eqn. (3.24) we obtain, after a rearrangement of terms:

zqmmw = zae OO T reMes 3 Bt (3.25)

j=m+1 i=m+1

where q{2), ; are the new coefficients of the w; terms. Solving for ey, in eq.(3.25)

we obtain (using eq. (2.4c) for B)):

m R

Ap et
€ne1 = 2Am+1,iWit D Smerk® 7 & (3.26)
i=1 k=m+2

where qp,; and sp, ¢ are O(1) quantities (assuming M is O(1)). This completes

the induction. Consequently eqn. (3.1) and eqn. (3.21) are correct for alli2> 1.

It follows from eq. (3.21) that the error involved in the assumption that e,
is a combination of wy, w9, - -, W is O(ek‘”“"t), which means the choice of the size
of the subspace of {w;; 1 £ i< m} should be such as to have Re(hy. = Apt' >> 1
for 1 € 1< rifr correct eigenvectors are wanted. Notice that no gap in the spectrum
is necessary for this estimate or the proposed method to be valid. Some of the eigen-
vectors (i.e. those for which Re(XA,, (= A)t] is not large enough) will not be well ap-
proximated by the procedure. In such a case an appropriate increase of the value of m
will ensure a good approximation for e, A similar statement will be shown below to

be true for the corresponding eigenvalues. Before we do thar, we present a second

-15-
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) result approximating the error involved in expressing the eigenvectors e, in terms of

the v, ’s [see eqns. (2.8), (2.9)].

We wish to show that for each 1 € i< R there is a linear combination of

‘
‘
'y {v; 1 £ i £ R}, which we denote by u; and which satisfies:
N
: u = e+ E Ke l,.l (3.27)
3 j=irl
where Kj; are O(1). As before this statement may be proven by straightforward in-
duction. Here we shall only sketch a proof. For i = 1 define
: u, = —-}—%acke (3.28)
1= At j 2
a;e =1
Hence:
- uy = e+ 3 —eMie (3.29)
.- 1 1 o ) -
o =2 1
7
Next define v{!) as v, divided by a,e™* & D7,
/
5 R o
4 v = e + zale*ﬂ“*""”" (3.30)
Y j=2 1
. Hence:
. R (.
viD-u = 3 —Leh'(e Ap(k=1yr_ - e (3.31)

At

g 1 . .
'y Dividing v{"-u, by oo we obtain:
1

- -16-
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Next define
uy = viPr(eMt - 1)
or:
R a A.jzt elj,t — 1
u, = e; + y — gt )ej (3.33)
j=3 %2 e -1

M VW Ny el

A similar procedure of Gauss elimination steps leads to:

621,-11_ 1 e)\j]‘f-_ 1
R
2hu7t T
u; = e3 + E—LCM’L e -1 exn -1 € (3.34)
j=4 3 2yt _ 1 Ant_ 1
eZkut_ 1 ;\.211_ 1

The continuation of this process obviously leads to the desired equation
(3.27). It is now easy to see the e; can be expressed in terms of {vy, Vn} with an

error of O(e)"“""‘). Notice that when t itself is large the coefficient of ¢; in eqn. (3.34)

tends to zero, which shows that one may obtain adequate approximations for large

values of T and (even) short values of t.

Finally we turn to estimating the error in the eigenvalues, when computed

using a finite number (n) of vectors. To this end define a matrix U by:

Ulj = \V'J"T\Vi 1 £ l,J £ n

U is the reduction (or projection) of the operator T to the fimie dumen-

......
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2 sional subspace spanned by the v’s (or w’s). Let ¢ be an eigenvector of U, with u
. corresponding eigenvalue A:
\.
: ZUXJ¢j Ag; (3.36)
7, Let:
: R .
. € = Zlbllw) 1€ i R (3.37)
j:

Then, since Te; = ¢™%e;, we have:
v R 1

bTw; = e™ Zb,] ; (3.38)
-. j=l
5 Hence:

= 3 bile My, (3.39)
jk=1

. and, using eqn. (3.35):
~
.
Y
N zb-l Mhy; (3.40)
N
, Hence, from eqns. (3.36) and (3.40):
X m R A -
) 3 Y by !ekbqu)l Ao (3.41)
. = 1k=1
N
N Detine:
K m 140
= Wy = Zbqu)j (N <42)
: =1
- 18-
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Hence

m R

RN
3 3 babile™ iy = Ay, (3.43)
i= k=1

R
Since Y bbi! = 8, we have:
i=1

At R R ~ 107
e+ Y Y bybyle™ iy = Ay (3.44)

k=1 i=m+1
By comparing eqn. (3.37) and eqn. (3.1) or (3.21) we observe that:
8y js i

Tt > 1
e )

b; = (3.45)

where the definition of Eij is obvious. Using eqns. (3.8), (3.9) with m = R and a; re-

placed by @j; in eq. (3.9) we see that:

b=A+B (3.46)
Hence:

b-!=A"l~ A"IBA"! + A-IBA-IBA™! - (3.47)

Since Ak‘jl = 0 for k < i, by definition, we have to estimate only terms containing ele-

ments of the matrix B in (3.47). In this case:

(1\- IB/\—l)ik = A_IB'

iz

-1 o N |
i Ak (3.48)

et Bllacna

AT el
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At ”
(ATIBA™ ) = T AT 3, AR (3.4

et ] s hiy
1;5 i i}( 153

N At . : : .
The largest contribution of e *' which is possible under the constraints
k< 1> i; € iisfori,=k and i; = i. A similar analysis holds for all terms in the

sum eq. (3.47). Hence:
-1 Khl 3 - -
by'=e™dy for i< k (3.50)

where dy are O(1) numbers. When i2 k, Ag'is O(1) itself and we denote it by dy.

Hence, from (3.45):

R i R R
My, + > Zbridikel“‘yk*’ PIEEDY bridikchtelhl\i’k':/\‘yr (3.51)

i=m+ lk=1 i=m+ l1k=i+1

Using (3.45) again (to substitute for b,):

At R Lty Mt
Wr+ Z Zarie dike Yy +

i=m+1 k=1

For [Re(Agp,; = Apt!>> 1 the leading order terms in the double sums of egn.

m+1
o1 b= )\-m¢, >‘ ’l" >
3. 52) are e b “arm*-l Z dm+l.ke Wk and e r.m+ 1dm+1 m+26 ® V-2, TESPRC-
k=1

tively. Hermnce:

k m l kmni’

ol ' S +2, .t = 3 S3
(™ = Ay, + €T (T A i g+ e e e g ) = 0033
k=1
To lowest order (i.e. neglecting e™ %) an cigensolution satisties: A = ¢ and
W, = O The next perturbative correction yields:
220
’-‘_.-i‘.(‘ Cum t "-_- e
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'
$a

' A=c¢e

which indeed shows that for a large enough filtration time, the error in the cigen-
values is exponentially small provided ReA, -t is well separated from (or much
smaller than) Rel,t. Thus no gap in the spectrum is necessary to obtain excellent
values for the leading eigenvalues. Obviously an increase in m will make the term

Amol.xt

e as small as needed.
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1IV. THE ALGORITHMS

In this scction we present detailed algorithms for the computition of

-

Ay, * -, A, and ey, - -+ ,e_. The aleorithm is described in steps:
1 n 1 n > P

(1)  Choose an initial vector xy. It does not matter if x4 is independent of ¢,
or other relevant eigenvectors. They will be introduced in step (2) by

round-off errors during the filtration process.

(2)  Solve the equation x = Mx, with x4 as initial condition, up to a time t.

X(t)
x|

condition and solve for a time 8, obtaining x,(08). Repeat this process r

Normalize the resulting x(t): x; = Use now X; as an initial

times to obtain:

_ x(r8)

= .1
= X0 (44

The reason one normalizes after each time t is to avoid deal-
ing with large numbers (since [x(t)| ec c)‘“ for large times). The choice
of r is explained below. Since it is not clcaf apriori whether xg is in-
dependent of e,e, etc., it is advisable to use low accuracy computation
in the first few iterations. In this way the weight of e,.e,, etc., will be

amplified.

(3) Compute vp= M 0 1€ kg mel. Orthonormalize
Vi, Va, * * * vy [using Householder transformations (Wilkinson, 1965),
for example]. The resulting orthonormal vectors are denoted by

w,, Wa, - - wp. Following each step of the orthonormalization pro-

hlal

-



cedure use the test of step (4) to make sure vy, - - - v, are independent.

i
The matrix ¢, defined by w; = 3 ¢, v, that results from the orthonormal-
=1

~

ization procedure should be kept.

(4)  Test whether v, is spanned by v, - - - v,. To do this compute:
m .
”E “ = lvn+1 - z (vm-pl‘wi)“'i l/ lvm+1 I (4:)
i=1

If the error E is larger than desired, increase m. If this process results in
too large a value for m, go back to step (2) and do several additional
iterations. Then repeat steps (3) and (4) until E is smaller than the

desired accuracy.

(5) Once the matrix ¢ and the vectors v, and w, are known, use (2.24) to

find the vy,’s. Alternatively solve the least square problem minimizing

m
the expression {[vp,.1 = Y ¥V; . Standard least square routines may be
i=1

used to solve for the ¥,;’s directly.
(6)  Use (2.20) to find the spectrum.
(7)  Use (2.18) to find the eigenvectors.

It should be stressed that in step (4) the test should be performed for
m = 2, 3, etc., up to a desired m so as to make sure that vy, - - v, are indeed in-
dependent. It may happen that the test in step (4) results in a value of m which i3
smaller than its desired value. In this case. either use a shorter integration time t or

o~y L
IR

the procedurc described below. If spurious eigenvalues appear, they will be

NS SN S . e

>~ Lot S vJ\ .-.‘-‘\.--_ RS }-_:... . » e ..__ .



¢« CL e U

a’ e

.t

PRSI

dependent. A comparison of the eigenvalues for different values of m enables the

identlication of the nonspurious eigenvalues.

The reason the procedure described above may converge for a vaiue of m
(say m,) which is smaller than the desired (number of eigenvalues) m can be a gap in

the spectrum at m,;, namely:
Rek; > Red;: - Redp >> Rekp > - (4.3)

In this case, A), A, * - - Ay, and the corresponding eigenvectors are obtained to an ex-

ponential accuracy which is demonstrated in the next section. Therefore it is pos,ible

to obtain the m, left eigenvectors e}' corresponding toe;, 1S 1S m,. These vectors
satisfy:

exL'ej = § (4.4)
Expanding J in the orthonormal set w (see eqn. (2.21)):

(elw)(wie) = §; (4.5)

Thus (e}*wk) is the inverse of the (known) matrix A (of rank m;):

ij = (W;:ej) (4.6)
Consequently:

L. v-! -

el = T Qi lwf (4.7)

=1
Consider now a vector Xy that is chosen to be orthogonal to el, 1€ i< m. Now
perform step (2) with the modification that after each time 6, x,(1) is orthogonalized

to wy, - - - wp - The resulting vector, after a time t. is:

4.




1 my ..
y(1) = — e'\“xo - E[(cmxo)-wl"]w‘ 4.3
p i= 1
where p is a normalization factor introduced in order to ensure |y| = 1. Since x has
been orthonormalized to w; it follows that:
m,
X=3¢ce+ Y ape (4.9)
i=1 > m;

where €; are exponentially small quantities. Substituting (4.9) into (4.8) results in:

_ 1 o At + 1 At + .
y(t) = —ZC €i[e"" (ein )Wj] + - z ¢ ai[ei—' (ei‘W’j )\Vj] (4.10)
i=1 Pi> m,

The difference [e;- (eiwj*)wj] is exponentially small for the exact ¢’s. So is (e;-w)-*)

for i> m,. Thus, for t not too large: y(t) = ¥ e"‘tai and the regular procedure can
i> m,

be applied to y(t) to find Ay, Ay 4y, ete. If Ay is close to Ay 4y a relatively large
time t in (4.10) may be necessary. In this case a better accuracy fore, 1< i< m,

should be obtained first. Methods to do so will be given in a future publication.

Another version of the suggested aléorithm which is highly suitable when
no gap in the spectrum exists is based on eqns. (2.25) — (2.26). Step (2) involves
then an orthogonalization after each integration for a time of t. The projection of the
operator T (in the subspace spanned by the w’s) can then be expressed as shown in
Section III [eqn. (3.35)]. The small resulting mxm matrix can be diagonalized by
LR/QR methods (Wilkinson, 1965) (we have used EIGCG1, an EISPACK routine;

yielding exponentially accurate results.

We summarize this section by mentioning that the above method can he

R T,
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efficiently used both when the available computer has a small memory (then incease

Ty) and when it has a large one (then more vectors and eigenvalues can be comput-

ed).




L,

ANe N

M

(W SN W

0
-'a

Pl

v

Vo IMPLEMENTATION OF THE METHOD: THE ORR-SOMMERFELD 1L.QU -

TION.

In this section we present an application of the methods described above o
a problem in hydrodynamical stability®: the spectrum of the Orr-Sommerfeld equation
for channel flow. This equation has an infinite number of degrees of freedom and
there is no "gap” in its spectrum. Thus it is a good test case for our methods. More-
over, the existence!! of previously computed, highly accurate values of the spectrum

enables us to perform a comparison of our results with the known spectrum.

The Orr-Sommerfeld equation reads:

N

(C-c)(Di*-a”)y~-U"y = (D~ o)y (5.1)

1R
yix,y,t) = y(y)explia(x—ct)]

where Uly) for = 1< v< 1, is the basic velocity profile, w(x,v,t) 1s the perturbdation

: o d
streamfunction, R the Revnolds number and D the cross-stream derivative v The
v

-

real number a represents the wavenumber of the streamwise periodic perturbation
and ¢ is the sought complex eigenvalue. The real part of the eigenvalue ¢, is the phuse
speed of the perturbation. The growth rate of the perturbation is expioc) where
¢, = Im c¢. Thus, a perturbation W is stable if ¢;< 0 and unstable if ¢,> 0. The beun-

dary conditions on eq.(5-1) are:

P2l

wix )y =Dwyx =0

The above is an cigenvalue problem. [t s transforme 4o B

dent problem (from which it oy actually derpved) hy redefinme the AN

N -

-
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function vy as:
V(Y0 = Wiy ne'™

even though the equation is separable in time. We thus solve the following initui

value problem:
3(D-a)y+ iaU(D*-a?)y~ ial”y = R™Y(D*- o)y
Yz 1) =Dyx1)=0 (5.2a.9)

It is convenient to define:

{= (D*-ady (5.3)
L= p+it (3.4a)
Y= 0+i) (3.4b)

to obtain the coupled real system:

3, p-alr+al” = R-Y(D*-a?)p (5.5a)
dA+alp-aU” = RYD?-a))r (5.5b)
(D)o = p (5.50)
(D*-a)y = A (5.5d)

with boundary conditions:

O(x 1)y = x(x1)=Dot=1)=Dyrx 1H =20 (3.4
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The real system may be formally written as vy = My, M being an integro-ditferentiul

operator.

These equations have been solved by the Chebycheff pseudo-spectral tech-
nique (see the appendix for details ). An initial filtering time T; was used to produce a
function w(y,t), which is spanned by a relatively small number of cigenvectors
corresponding to leading eigenvalues Re(—itc) or the fastest growing modes, as hus

been explained previously.

In all computations results have been presented for the parameter values

a = 1.0 and R = 10,000. The base velocity profile U is (1 - y=).

The results of our computations using the methods developed are present-
ed in five tables. A sixth table of eigenvalues from ref.1l is taken as standard and
used for comparing the accuracy of our results In all cases we obtain several leading

eigenvalues to a very high accuracy.

In our computations we vary the filtration time Tg, the sampling interval 7,
the accuracy of the time integration as expressed by the discrete time-step size during
filtration 3t; and during the sampling dt, in order to elucidate their effect on the accu-
racy of the computed spectra and the possible generation of spurious modes. We have
also investigated the influence of the initial streamfunction w(y,0) and of the number

of eigenvalues determined on the accuracy of the results.

Three methods have been used for obtaining the eigenvalues, ay expouned
below. Table I presents results of 2 runs with a sampling tme/deley time of 15 and
“~\’.I

an initial filtration of 50. The number of correct eigenvalues obtuined usimg e

15 5 when the number of vectors 15 8 or 16, The reason for this s the tact thay the
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filtration time is too large to produce more eigenvalues accurately. For the case n- 1o
we also obtain two dominant spurious modes. This is due to the sensitivity of the
roots of the characteristic polynomial to small inaccuracies in the coefficients. The

dominant spurious cigenvalues may be easily identified by their appearance as n, the

. 3
number of vectors is increased. The initial condition for table I is (1-y~)>+ 3y,
i= 1

where y; are eigenvectors corresponding to the fastest growing 8 eigenmodes.

Table II was obtained with an initial condition of y = U3(1+v). The factor
(1+y) is introduced to ensure that the initial condition has both an even and an odd
part as U? is even in y. As the filtration time is increased from T;= 50 to 1 = 75 the
number of accurate eigenvalues rises to 5. The longer filtration time allows for a
better damping of the decaying modes not of interest. It is possible that the cruder
time step in the second case, &ty = 0.075 as opposed to Oty = 0.05 may introduce

modes independent of the initial condition by way of numerical noise.

In Table III the vectors v, were generated from the initial condition
U*(1+0.71y) after a filtration of T; = 75 and a delay interval of T = 20. However, in-
stead of using eq.(2-20) for finding the eigenvalues, we have empléyed the LR algo-
rithm s implemented in the EISPACK routine EIGCG!1 to calculate the eigenvalues
of the matrix directly. Four eigenvalues are obtained accurately both for n= 8 and

n= 16 vectors.

Tables IV and V were produced using the method of orthogonalization
described at the end of section 11 ( see eq.(2-25,26) ). The eigenvalues of the reduced
matrix obtained were acain computed using EIGCG 1. In table IV an increase of T,

from S0 to 150 leads to an mcrease in the number of accurate creenvalues from 3 to 3

-30-
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for n = § vectors. The improved accuracy using this last method is obtained, as ex-
plained in section III, by the amplification of the weight of the non-lcading eigenvee-

tors in the orthogonalization procedure. Indeed, as seen in table V, the number of ac-

[ an

curate eigenvalues when n= 32 vectors is used is 13. The method of orthogonalization

produces 12 accurate eigenvalues for n=32 even when no filtration is invoked. In all
cases we have obtained excellent accuracy for the leading eigenvalue. The subdom-
inant eigenvalues corresponding to anti-symmetric modes tend to be somewhat more

accurate than eigenvalues corresponding to symmetric modes.

-31-



Sadatiasadad st ieadadinany |

OGO OIS TN T
193

VI. SUMMARY AND CONCLUSIONS

We have shown how one can obtain leading eigenvalues and eigenvectors
for large asymmetric matrices using a relatively simple and economical numericul
scheme. We have also shown how such a method can be applied when the matrix to
be diagonalized is a d°fferential operator. In the latter case our method does not re-
quire storing of an effective matrix, which represents the differential operator on a

complete basis of expansion functions.

Three variants of the method were tested: a) A direct application of the
formalism presented in section II. b) A construction of a set of vectors as explained in
section II and the associated reduced matrix, followed by a diagonalization using stan-
dard eigenvalue routines for general matrices. ¢) Direct construction of a set of
orthogonal vectors as at the end of section II followed by a diagonalization of the re-

duced matrix.

The third variant seems to be the superior method. The method was
found to be very robust and did not require fine tuning to improve the accuracy of the
calculated eigenvalues. Nor does it prodx'lcc spurious dominant eigenvalues. The accu-
racy of the leading eigenvalues may be further increased by considering larger reduced
matrices. that is by increasing the number of orthogonal eigenvectors. The errors in-
volved in the proposed algorithm are analyzed in detail in section III and are in good

acreement with our numerical results.

o
o

When a large matrix, of rank R, is considered the number of operations
qecessary to find its cigenvalues, using standard methods, scales like R-. In our

meihod, the number of operations is proportional to the rank R, the number of vec-
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tors used, m, and the time of filtration t;, i.e. it is Rnt;. The time of filtration depends
on the spectrum, as explained in section IlIl. If one wishes to obtain k correct eigen-

values one needs:

{ea,.l- xot{ << ]

1

Thus the value of t; is of the order of ———1—.
p"m+l - xkl

Future applications of this method could include complex and non-
Newtonian hydrodynamical stability problems, lattice eigenvalue problems and other
systems leading to large asymmétric matrices for which the dominant eigenvalues are
of interest and standard methods are either slowly converging or the memory require-
ments are prohibitively large. We believe that this method coupled to acceleration

techniques may enable one to tackle many interesting eigenvalue problems.
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APPENDIX

In this Appendix we present some details concerning the numerical solu-
tion of eqn. (5.4). We have employed a pseudospectral technique based on the expan-
sion of y in Chebyshev polynomials, which gives a good resolution of boundary and
critical layers. A third order Adams-Bashforth time-stepping scheme was used for an
explicit evaluation of the advection (variable coefficient) terms and a second order
Crank-Nicholson scheme for the linear diffusion terms. The time discretized equa-
tions read:

(z+1) (n)
L2700V uram - 10500 L S h0-
At D 12 12 :

m23 ) _ 16 -1 L 5 (-2 L N2 o2y aa+1) _ A(0)
ELA - — — = —(D3- - Al
+aU[12x L + L ] 2R( as)(p Pty (AL

and

A(a+1) - 3(0)

23 Jmy - 16 m-1 L 3 0-2)
-+ kel - — + —
At Uiy P Pl

12 12

23, (my _ 16 5 . (a- 1 )
- U o 10 0= La-2) 2 L (D2- o)A@ D+ A™](AL2
alU1350 A + 5077 = g (DTl J(A.2)

r

Eqns. (A.1) and (A.2) can be rearranged as follows:

(D2 - o2 }B,)p(nn) = F{an-la-2)
At
(A.3)

-

(D-- al- .2_&.))\(!14»1) = F‘gn.n-?.,n—l)
At “

F, and F, being found from (A.l) and (A.2). The functions o and g satisiy isee

.34-
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eqns. (5.3), (5.9)]:

(Dz _ a2)¢(n+l) = p(Ml)

(A.4)
(DZ - a2)x(n+l) = A(o+D)

Since the boundary conditions are on y = ¢ + iy alone, we have used the following
Green function technique to satisfy these conditions. First, we find solutions to (A.3)
satisfying p(®*D(+ 1) = A0+ D¢+ 1) = 0. We call these solutions pfZil and Af2:D.
These solutions are then substituted in the right hand side of eqns. (A.4) and solved
using the (given) boundary conditions ¢(* 1) = x(£ 1) = 0. We call these solution
o2+1 and % 27] respectively. They do not necessarily satisfy the Neumann boundary

conditions D¢ (+ 1) = Dy(£ 1) = 0. Next we solve the homogeneous equation:
2R 2R
DI-a2- =)p=0; (D?- a2- ==)A =0 AS
( At )P ( AL ) (A.5)

using boundary conditions p(1) = 1, p(-1) = 0 and A(1) = 1, A(=1) = O respectively.
These solutions are called p, and A,_. Similarly we find p_ and A_ which satisfy (A.5)
with p_(1) = 0, p_(0) = 1 and A_(1) = 0, A_(0) = 1. Subsequently eqns. (A.4) are
solved with p,, p_ and A,, A_ on the right side yielding ¢. and x, respectively (with
boundary conditions ¢. (£ 1) = %, (£ 1) = 0 as required). The general solution for

0@+ and %(®*D can now be written:

o0+ D = o0l + a0, + a0,
(A.6)

XD = aiem) + ke + X

The constants a. and b, are determined by imposing the Neumann boundary cordi-

-35.
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h tions Do D(x 1) = Dy (% 1) = 0 thus yielding a solution 6™ + ix™ ! which
'
' . .. .
) satisfies all four boundary conditions. The solutions ¢. and ¥, need only be com-
" puted once in a preprocessing step thus necessitating only two Poisson solvers per
\ time step. The above leads to a very efficient time integration for the initial value
i)
problem.
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T;= 501 = 15 8t; = 0.05 8t; = 0.005

Table [

Tr= 501t = 15 &ty = 0.05 &t, = 0.005

Identified
Mode Nurmber

Eigenvalue ¢;

Identified
Mode Number

Eigenvalue ¢,

* #* ¥ Lo —

3.73967060-03
-3.51600679-02
-3.52076045-02
-5.08987828-02
-6.31504249-02
-8.72158010-02
-1.24740808-01
-1.32275383-01

* X ¥ ¥ WD X X X K X ¥

3.73967060-03

4.58986340-04

3.40898714-04
-3.02658282-03
-1.49838951-02
-2.36492604-02
-2.93611665-02
-3.51423731-02
-3.52793842-02
-5.08971644-02
-1.09428509-01
-1.23518682-01
-1.48108621-01
-1.84825899-01
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Table I1

T;= 50 © = 20 &ty = 0.05 &t = 0.005

--------

Tg= 75 1t = 20 &1, = 0.075 6t = 0.005

Identified
Mode Number

Eigenvalue ¢;

Identified
Mode Number

Eigenvalue c,

* % ¥ X * PN —

3.73967054-03
-3.51921344-02
-5.09056673-02
-5.52082215-02
-7.13017236-02
-1.32670178-01
-1.47519731-01
-1.64393611-01

* % ¥ NP YN~

3.73967055-03
-3.51630043-02
-3.67725906-02
-5.08973087-02
-6.18479421-02
-8.98244690-02
-1.25561448-01
-1.90016840-01
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Table 111

Te= 75 1 = 20 81, = 0.075 t, = 0.005

T;= 50 T = 20 8t; = 0.05 8t, = 0.005

Identified
Mode Number

Eigenvalue c;

Identified
Mode Number

Eigenvalue ¢,

* % ¥ WA b -

3.73967061E-03
-3.51313310E-02
-3.77382799E-02
-5.08939102E-02
-6.08654660E-02
-8.94164908E-02
-1.23537573E-01
-1.83295676E-01

kO WONW bW % % X *— %

*

5.04217689E-03

3.73967060E-03
-9.48657987E-04
-1.15472857E-02
-1.55870014E-02
-2.30304183E-02
-3.40328560E-02
-3.51905276E-02
-5.09188577E-02
-5.12119074E-02
-6.27014559E-02
-9.93438231E-02
-1.11875376E-01
-1.11941416E-01
-1.17783465E-01
-1.70313262E-01
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Table 1V
T,=501t=20 Te=75t=20 Te= 1507 =20
oty = 0.05 &t = 0.005 Sty = 0.075 &t, = 0.005 oty = 0.075 &t, = 0.005
Identified Identified Identified | :

Mode Number

Eigenvalue ¢,

Mode Number| Eigenvalue c,

(
Mode Number | Eigenvalue c,

1 3.73967060E-03 1 3.73967060E-03 1 ! 3.73967060E-03 |
2 -3.51932116E-02 2 -3.51137133E-02 2 !-3.517237185-02}
4 -5.09053371E-02 3 -3.74768214E-02 3 -3.51870632E-02!
* -5.48854885E-02 4 -5.08944600E-02 4 -5.08987622E-025
. -7.36915731E-02 5 -6.07586848E-02 S -6.30009355E-02
* -1.38156654E-01 7 -9.17031242E-02 * -1.37863162E-01 :‘
* -1.41371117E-01 * -1.23567838E-01 * -1.43432356E-01 |
* -1.58274564E-01 * -1.82561894E-01 * -1.74728812E-01 |
e e e e A e e e AT e N P R e
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| .1.98326255E-01 |

1-2.02233301E-01 |

-2.20500814E-01
-2.36270762E-01 |
-3.62463018E-01 |
-3.88173344E-01

Table V
Te=751t=120 Ti=50t =20 = 20
oty = 0.075 St = 0.005 Stg = 0.05 &1, = 0.005 oty = 3ty = 0.005

Identified Identified f
Mode Number| Eigenvaluec, |Mode Number| Eigenvaluec, iMode Number!| Eigenvalue ¢, )
1 3.73982608E-03 1 3.73967060E-03 1 3.73967061E-03 |
2 -3.51127796E-02 2 -3.51672225E-02 2 -3.51672225E-02 ’
3 -3.51320836E-02 3 -3.51865287E-02 3 -3.51865287E-02 |
4 -5.08984842E-02 4 -5.0898730S5E-02 , 4 -5.0898730SE-C2 '
5 [ -6.31517698E-02 5 ,‘-6.3201444213-02 5 -6.32014442E-02 |
6 -6.32018420E-02 6 {-6.32515219E-02 6 -6.32515219E-02 ;
7 -9.11772541E-02 7 -9.12220344E-02 7 -9.12220344E-02
8 -9.12687323E-02 8 -9.13134832E-02 8 -9.13134832E-02 ;
9 -1.19161983E-01 9 -1.19223288E-01 9 {-1.19223290E-01 :
10 -1.19342042E-01 10 -1.19380224E-01 10 (-1.19380226E-01 |
* -1.21170936E-01 11 -1.24500810E-01 11 -1.24500810E-01 |

11 -1.24500425E-01 12 -1.38224635E-01 12 -1.38224635E-01

12 -1.38223897E-01 13 -1.45450671E-01 13 -1.45453318E-01
* -1.44467829E-01 * -1.51063411E-01 * -1.51161943E-01 |
13 -1.45609239E-01 * -1.58158173E-01 * -1.58054756E-01 |
14 -1.46448075E-01 * |-1.60717285E-01 * -1.60711699E-01 ,
15 -1.75078430E-01 * -1.61124155E-01 * -1.61259736E-01 !
17 l-1.817l9355E-01 * -1.64875002E-01 ; * -1.64733124E-01 |
* -1.97966129E-01 * -1.67412781E-01 * -1.67404319E-01

18 -2.04658289E-01 * -1.72649311E-01 * -1.72218483E-01
21 -2.07844699E-01 15 -1.75188825E-01 * -1.74695007E-01 !
* -2.20742079E-01 * -1.78192328E-01 * -1.80676443E-01 -
d -2.22041721E-01 * 1-1.81309666E-01 17 1-1.82319221E-01 ¢
* -2.67948177E-01 * -1.82017191E-01 * |.1.33159308E-01
17 -1.82776874E-01 * -1.89780943E-01 |
* -1.92666139E-01 * -1.95481111E-01 ,

22.0165274CE-01
.2.02249437E -0}
-2.06222331E-01
.2.34084842E-01 |
.2.65098028E-01
1.3.11342750E-01
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Table VI

Least stable eigenvalues fora = 1, R =

Mode Number

Eigenvalue c,

00~ O\ h bW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

+ 0.00373967
- 0.03516728
- 0.03518658
- 0.05089873
- 0.06320150
- 0.06325157
- 0.09122274
- 0.09131286
- 0.11923285
- 0.11937073
- 0.12450198
- 0.13822652
0.1472339
0.1474256
0.1752287
0.1754781
- 0.1828219
- 0.203221

- 0.203529
-~ 0.206465
- 0.208731
- 023119

- 0.23159

- 0.23882

- 0.25872

- 0.25969

- 0.25988

- 0.26511

- 0.26716

-~ 0.28551

~ 0.28663

- 0.28765
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